# **Boeing Drone Frame**

Project 03 Team Hi-Jax Dante Faria, Damien Brothers, Jay Khunt, Tommy Schreiber, Colby Murphy

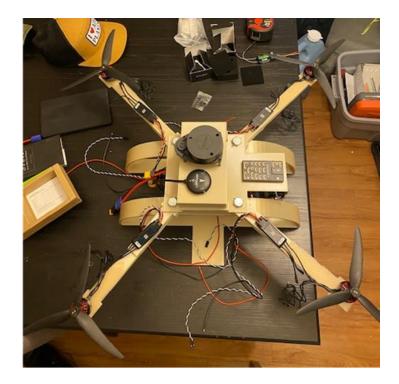


## **Project Description**

Design, analyze, and manufacture a 3D printed drone frame that minimizes weight and maximizes flight time using set commercially available components.


- Sponsor: Boeing
- Gain insight into team's academic processes.
- Seek innovative solutions from another perspective.




Colby Murphy

## Background

### **Current Model:**



Figures 1-2: Current assembled drone courtesy of Boeing.



**Damien Brothers** 

### **Similar Device Benchmarks**

### **DJI Phantom Series:**

#### Yuneec Commercial Drones:

#### Parrot ANAFI USA Drone:



Figure 3: DJI Phantom 4 RTK Drone.



Figure 4: Yuneec Typhoon H Plus



Figure 5: Parrot ANAFI USA Drone.

**Damien Brothers** 

## Literature Review (Type: Articles)

### • Drones and Possibilities of Their Usage [1]

- The article explains the science behind the construction of drone and most important parts such as frame, propellors, engine, power, and communication system and the uses of drone.
- The engine and wing size compatibility is very important. The larger the wing size, lowers the speed and drone volatility, and increases the aerodynamic lift, pressure, torque on engine and the vibration.
   To normalize everything, we must use compatible engine to the wing.

### Aeromechanical Design and Analysis of H-Drone Configuration [2]

• This article describes the aeromechanical design and analysis of the H-Drone. The numerical simulations is performed to obtain the aerodynamic and propulsion characteristics, along with the structural design of H-Drone.

| Frame configuration | - F - F                                    | FCU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Input parameters                              |   |                                           | ering<br>rmance      | Max. Throttle<br>Performance              |                       |  |
|---------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|---|-------------------------------------------|----------------------|-------------------------------------------|-----------------------|--|
|                     | Total Weight: 4.2 kg<br>Frame Size: 830 mm |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Min. Battery<br>Capacity 15%                  |   | Hovering<br>Time<br>Throttle              | 21.14 min.<br>66 %   | Flight<br>Time<br>Total                   | 8.8 min.<br>71.2 N    |  |
| l St                | Altitude: 100 m                            | California de la compañía de la comp | Takeoff                                       | ł | (in %)<br>ESC<br>Current                  | 6.51 A               | Lift<br>ESC<br>Current                    | 16 A                  |  |
|                     | Air Temperature: 25°C                      | °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Throttle 75%<br>Tilt Limit 20°<br>Attaches    | - | Motor<br>Speed<br>Motor<br>Power          | 4018.4 rpm<br>94.3 W | Motor<br>Speed<br>Motor<br>Power          | 5284.7 rpm<br>214.5 W |  |
| Motor               | T-MOTOR Antigravity<br>4006 KV380          | Propellers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Current 0.5 A<br>T-MOTOR<br>16*5.4CF          |   | Battery<br>Voltage                        | 24 V                 | Battery<br>Voltage                        | 23.7 V                |  |
| Esc                 | T-MOTOR AIR 40A                            | Battery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Li-Po, 6S,<br>11000 mAh Max.<br>Const. C 35 C |   | Battery<br>Current<br>Power<br>Efficiency | 26.5 A<br>58.6 %     | Battery<br>Current<br>Power<br>Efficiency | 64 A<br>55.3 %        |  |

Jay Khunt

## **Customer Requirements**



- Client: Boeing
- The customer requirements are objectives that the client is looking for within the design of the project

#### LIGHTWEIGHT

#### OPTIMIZED THRUST TO WEIGHT RATIO

OPTIMIZED COMPONENT LOCATION

**3D MATERIAL PROCESS** 

MANUFACTURED PROTOTYPE AIRFRAME

FLYING PROTOTYPE

LOW COST

MINIMAL HARDWARE

Dante Faria

## **Engineering Requirements**

- WEIGHT REDUCTION < 3LBS
- THRUST TO WEIGHT RATIO > 1.81
- LIDAR FIELD OF VIEW
- CAMERA FIELD OF VIEW
- CENTER OF GRAVITY
- MATERIAL STRESS ANALYSIS
- MATERIAL COST ANALYSIS
- TIME OF FLIGHT
- \$5,000 Budget
- MINIMIZE HARDWARE PIECES

### • QFD

- Customer and Engineering Requirements are weighted to find the importance of each need
- Given numerical values to objectives

|    |                                  |                  |                         |                               |                     |                      |                   | _           |                        |                |                   |                          |        |         |              |          |             |       |
|----|----------------------------------|------------------|-------------------------|-------------------------------|---------------------|----------------------|-------------------|-------------|------------------------|----------------|-------------------|--------------------------|--------|---------|--------------|----------|-------------|-------|
| 1  | WEIGHT REDUCTION < 3LBS          |                  |                         |                               |                     |                      |                   |             |                        |                |                   |                          |        |         |              |          |             |       |
| 2  | THRUST TO WEIGHT RATIO > 1.81    |                  | 9                       |                               |                     |                      |                   |             |                        |                |                   |                          |        |         |              |          |             |       |
| 3  | LIDAR FIELD OF VIEW              |                  |                         |                               |                     |                      |                   |             |                        |                |                   |                          |        | Legend  |              |          |             |       |
| 4  | CAMERA FIELD OF VIEW             |                  |                         |                               | 3                   |                      |                   |             |                        |                |                   |                          |        | Α       |              | II PHANT |             |       |
| 5  | CENTER OF GRAVITY                |                  | 1                       | 1                             | 9                   | 9                    |                   | _           |                        |                |                   |                          |        | В       |              | UNEEC T  |             |       |
| 6  | MATERIAL STRESS ANALYSIS         |                  | 3                       |                               |                     |                      |                   | $\sim$      |                        |                |                   |                          |        | С       | P/           | ARROT AN | NAFI USA    | DRONE |
| 7  | MATERIAL COST ANALYSIS           |                  | 9                       | 1                             |                     |                      |                   | -9          |                        |                |                   |                          |        |         |              |          |             |       |
| 8  | TIME OF FLIGHT                   |                  | 9                       | 9                             |                     |                      | 1                 |             | -3                     |                |                   |                          |        |         |              |          |             |       |
| 9  | LESS THAN \$5,000                |                  | 3                       | -3                            |                     |                      |                   | -9          | 9                      | -3             |                   |                          |        |         |              |          |             |       |
| 10 | MINIMIZE HARDWARE PIECES         |                  | 3                       |                               | 1                   | 1                    |                   | -3          |                        |                | -1                |                          |        |         |              |          |             |       |
|    |                                  |                  |                         |                               |                     | Teo                  | hnical F          | Requirem    | nents                  |                |                   |                          |        | Custome | r Opinion S  | urvey    |             |       |
|    | Customer Needs                   | Customer Weights | WEIGHT REDUCTION < 3LBS | THRUST TO WEIGHT RATIO > 1.81 | LIDAR FIELD OF VIEW | CAMERA FIELD OF VIEW | CENTER OF GRAVITY | MATERIAL \$ | MATERIAL COST ANALYSIS | TIME OF FLIGHT | LESS THAN \$5,000 | MINIMIZE HARDWARE PIECES | 1 Poor | 2       | 3 Acceptable | 4        | 5 Excellent |       |
| 1  | LIGHTWEIGHT                      | 5                | 9                       | 9                             |                     |                      | 3                 | 3           | 3                      | 9              | 1                 | 3                        |        | В       |              | A        | С           |       |
| 2  | OPTIMIZED THRUST TO WEIGHT RATIO | 4.5              | 9                       | 9                             |                     |                      | 1                 |             |                        | 9              |                   |                          |        | -       |              | AC       |             |       |
| 3  | OPTIMIZED COMPONENT LOCATION     | 3.5              |                         |                               | 9                   | 9                    | 9                 | 1           |                        |                |                   | 3                        |        | С       |              | AB       |             |       |
| 4  | 3D MATERIAL PROCESS              | 4                | 9                       | 9                             |                     |                      | 9                 | 9           | 9                      |                | 9                 | 3                        |        | В       | -            | c        |             |       |
| 5  | MANUFACTURED PROTOTYPE AIRFRAME  | 5                | 9                       | 3                             | 9                   | 9                    | 1                 | 9           | 9                      | 3              | 9                 |                          | В      |         | C            | A        |             |       |
| 6  | FLYING PROTOTYPE                 | 2                | 9                       | 9                             | 9                   | 9                    |                   |             |                        | 3              | 3                 |                          |        |         |              | В        |             |       |
| 7  | LOW COST                         | 1.5              | 9                       |                               |                     |                      |                   | 1           | 9                      |                | 9                 | 3                        | A      | С       | В            | 0        |             |       |
| 8  | MINIMAL HARDWARE                 | 3                | 9                       |                               |                     |                      | 1                 | 3           | 3                      |                | 3                 | 9                        | В      |         |              | С        | A           |       |
|    | Technical Requirement Units      |                  | LBS                     | N/A                           | DEGREES             | DEGREES              | INCHES            | PSI         | Ś                      | MINUTES        | \$\$              | #                        |        |         |              |          |             |       |
|    | Technical Requirement Targets    |                  | 2.8                     | 2                             | 180                 | 360                  | 0                 | 2000        | 150                    | 30             | 1500              | 24                       |        |         |              |          |             |       |
|    | Absolute Technical Importance    |                  | 225                     | 154.5                         | 94.5                | 94.5                 | 95                | 110         | 118.5                  | 106.5          | 114.5             | 69                       |        |         |              |          |             |       |
|    | Relative Technical Importance    |                  | 1                       | 2                             | 7                   | 7                    | 7                 | 5           | 3                      | 6              | 4                 | 10                       |        |         | Da           | ante l   | Faria       |       |

### Schedule

|        |             |                        | Individual        | Team            |   |
|--------|-------------|------------------------|-------------------|-----------------|---|
| Week   | Week Starts | Agenda                 | Assignments       | Assignments     |   |
|        |             | Lecture:               |                   |                 |   |
|        |             | Introduction to        |                   |                 |   |
| 1      | 29-Aug      | Capstone               | Project Sign up   |                 |   |
|        |             | Staff/Team             |                   |                 |   |
| 2      | 5-Sep       | Meetings               | SW Review         | Team Charter    |   |
|        |             | Lecture:               |                   |                 |   |
|        |             | Presentation           |                   |                 |   |
|        |             | guidelines,            |                   |                 |   |
|        |             | Report                 |                   |                 |   |
| 3*     | 14-Sep      | guidelines, etc.       |                   |                 |   |
|        |             | Presentation 1:        |                   |                 | I |
|        |             | CNs/ERs and            |                   |                 |   |
| 4      | 21-Sep      | Background             | Peer Eval 1       |                 |   |
|        |             | Staff/Team             |                   |                 |   |
| 5      | 28-Sep      | Meetings               |                   |                 |   |
|        |             | Staff/Team             |                   |                 |   |
| 6      | 5-Oct       | Meetings               | Self Learning     |                 |   |
|        |             | <b>Presentation 2:</b> |                   |                 | 1 |
|        |             | Concept Gen            |                   |                 |   |
| 7      | 12-Oct      | and Eval               | Peer Eval 2       |                 |   |
|        |             | Staff/Team             |                   | Preliminary     |   |
| 8      | 19-Oct      | Meetings               |                   | Report          |   |
|        |             | Staff/Team             |                   |                 |   |
| 9      | 26-Oct      | Meetings               |                   | Website Check   |   |
|        |             | Lecture:               |                   |                 |   |
|        |             | Analytical             |                   | Individual      |   |
|        |             | Analysis               |                   | Analytical      |   |
| 10     | 2-Nov       | Discussions            |                   | Memo            |   |
|        |             | Presentation 3:        |                   |                 | 1 |
|        |             | Final                  |                   |                 |   |
| 11     | 9-Nov       | Presentation           | Peer Eval 3       |                 |   |
|        |             | Staff/Team             |                   |                 |   |
| 12     | 16-Nov      | Meetings               |                   | Final Report    |   |
|        |             | Staff/Team             |                   | Final           |   |
| 13     | 23-Nov      | Meetings               |                   | CAD/BOM         |   |
|        |             | Staff/Team             | Indiv. Analytical |                 |   |
| 14*    | 30-Nov      | Meetings               | Report            |                 |   |
|        |             | Prototype              |                   |                 |   |
| 15     | 7-Dec       | Demo                   |                   | Final Prototype |   |
| Finals | 12-Dec      |                        | Final Peer Eval   | Website check   |   |

9/26 @ 2pm – Tag-up to review Capstone Schedule and Help Needed
10/26 @ 2pm – Review Prelim Report, website, and Help needed in prep for Analytical Memo

11/7 @ 2pm – NAU share Preliminary Final Presentation and Final report with Boeing
General – Familiarize ourselves with ANSYS

\* Project is on time however we are still waiting on CAD files from Boeing

## **Budget**

- Boeing has granted the team \$5,000 to complete the task at hand
- We estimate that we will only use about \$3,000 of the budget
- All required parts needed for manual flight will cost the team \$581. If you include all parts of the design, it will cost \$1,100.
- Only minimal hardware is needed to test the airframe on a manual flight.
- Printing Air Frame in NAU MakerLab will be around \$340 to make with 1,300 grams of filament (3 lbs or lighter)

| Components on Example Drone            | Quantity |
|----------------------------------------|----------|
| Hobbytown 40A ESC                      | 4        |
| Gemfan 9045 3-Blade Prop               | 4        |
| Battery Charger                        | 1        |
| Battery Connector                      | 1        |
| Socokin 6S Lipo Battery                | 1        |
| Slamtec RPLIDAR                        | 1        |
| iFlight XING 2814 880KV Motor          | 4        |
| Arducam PTZ Camera                     | 1        |
| 2-Axis Brushless Gimbal                | 1        |
| Flysky FS-i6X 2.4GHz RC Trans/Receiver | 1        |
| NVIDIA Jetson Nano GPU                 | 1        |

**Color Coding Key** 

Required Component for Footprint on Design, cannot be altered (not required to purchase) Required for Manual Flight, can be altered with similar component if unavailable

Colby Murphy

# Thank You!

Questions?





- 1. Kardasz, P., Doskocz, J., Hejduk, M., Wiejkut, P., & Zarzycki, H. (2016). Drones and possibilities of their using. *J. Civ. Environ. Eng*, *6*(3), 1-7.
- Dwarakanathan, D., Raja, S., Shanmugam, P., Shashank, D., Rohan, M., Selvam, C., ... & Saha, S.K. (2022, May). Aeromechanical Design and Analysis of H-Drone Configuration. In 2022 13th Asian Control Conference (ASCC) (pp. 2223-2228). IEEE. <u>https://ieeexplore.ieee.org/abstract/document/9828119</u>